Passive Aquifer Mining for Landfill Expansion

Joan A. Smyth, P.G.
and
Stacey A. Smith, P.E.

Wessex Institute of Technology
Waste Management Conference 2008
June 2 – 4, 2008

Background

- Waste Industries – Sampson County Disposal MSW Landfill (205 AC)
- Site has an overall soil deficit of almost 5 MCY
- Soil is imported from over 5 miles away
- Desire to bring the site into soil balance
- Desire to increase landfill airspace

Challenges

- Maintain four (4) foot separation from groundwater
- Maintain under gravity flow conditions (no long term pumping)

Project Concept

- Interior interceptor trenches
- Perimeter gravity groundwater main header
- Receiving collection manholes
- Potential to lower landfill base grades by 20 feet
- The Gravity Groundwater Intercept (GGI)
Proposed Site Layout

Keys to Design
- Hydraulic Conductivity
- Minimize Groundwater Rebound
- Radius of influence

Considerations
- Decomposition of system
 - Pipe flow vs. Stone Flow
- Recharge
 - Reduced with landfill
 - Flow intercepted at headwater

Site Topography and Hydrogeology
Site Geology

- Site geology primarily silty to clayey sands.
- Black Creek Aquitard found between 25 and 35 feet below grade over most of the site.
- Black Creek Aquitard hydraulic conductivity of $\sim 5 \times 10^{-7}$ cm/sec.

Program Outline

- Phased approach with frequent cost/benefit analyses.
- Regulatory involvement – nearly constant!
- Each step reviewed for predictability/reliability of data.

Regulatory Requirements

- Four-foot separation to groundwater maintained through post-closure and beyond
- Gravity system only
- Black Creek Aquitard to remain untouched
- Initial model and ground truthing

Starting Point

- Original site design with large soil deficit
- Soil boring and groundwater data from 66 piezometers from 1994 forward
- Grain size analyses
- Initial conceptual (2-D) model based on Leonards (1962) as a partially penetrating slot
- Slug test data – questionable (0.01 to 10 ft/day)
Pump Testing

Pump Test Results
- Pump tests conducted between 6 and 26 gpm – pumping well size a factor
- Hydraulic conductivities ranged from 115 to 284 ft/day
- Model utilized 135 ft/day
- Bradbury & Muldoon (1990)

Model Calibration

Partial Construction Model
Final Construction Model

Field Demonstration
- Regulatory “Prove It!”
- Initial installation over 22 acre cell area
- 7 piezometers installed
- Rebound anticipated ~0.5 feet
- Trench inverts set at 5' below cell subgrade

Ground Truthing
- Piezometer installation
- Water levels
- Rainfall data
- Target elevations

Site Plan
Demonstration Performance

- 1 year seasonal high groundwater surface
- Most targets achieved within 4 months
- Average recharge on the system = 65 GPM < 300 GPM
- Factor of Safety of 4.6
- 65 GPM/600 feet = 0.1 GPM/FT (actual) after 5 months
- Simplest analysis yielded the best results
- Black Creek required system to be adjusted by 7 feet in the sump area

Final Construction Phase

- Go ahead!
- Pipe to creek
 - Horizontal directional bore
 - Installed in three sections (cell, creek, future) to manhole
 - Installed at minimum 0.1% slope
 - Surveys performed every 25 feet along alignment

Cofferdam Construction
Keys to Design

- Must be dewatered for minimal reinforcement
- Pipe inverts 22 feet below groundwater
- Designed as soldier with embedment
- What went wrong?

Dewatering

Reinforcement

Horizontal Boring Equipment
Horizontal Bore Results

- All end targets were achieved within 0.5 feet
- Longest run was approximately 1500 LF
- Average depth of 25 feet
- 18" maximum pipe size
- 0.1% pipe slope maintained; maximum deviation was approximately 1.5 feet but below proposed alignment

Outlet Structure

Benefit to the Site

- Net change of ~18,000 CY/AC in soil need
- Close proximity of operational cover soil
- Increase of ~2.5 MCY in landfill airspace
- Increase in overall stability of the landfill
- Benefit Cost Ratio ~ 5:1
- Site intends to continue plan over the remaining 120 acres
End Result

Thanks to:

- Waste Industries USA, Inc.
- The Hutchinson Group, Ltd.
- Glover Construction Company, Inc.
- Delta Directional Drilling
- Dr. Gregory N. Richardson, P.E.